Copied to
clipboard

G = C345C6order 486 = 2·35

5th semidirect product of C34 and C6 acting faithfully

metabelian, supersoluble, monomial

Aliases: C345C6, C3≀C34S3, C3⋊(C33⋊C6), He31(C3⋊S3), (C3×He3)⋊10S3, C3312(C3×S3), C34⋊C22C3, C3.6(He34S3), C32.17(C32⋊C6), (C3×C3≀C3)⋊7C2, C32.16(C3×C3⋊S3), SmallGroup(486,167)

Series: Derived Chief Lower central Upper central

C1C34 — C345C6
C1C3C32C33C34C3×C3≀C3 — C345C6
C34 — C345C6
C1

Generators and relations for C345C6
 G = < a,b,c,d,e | a3=b3=c3=d3=e6=1, ab=ba, ac=ca, ad=da, eae-1=a-1c-1, bc=cb, bd=db, ebe-1=b-1, cd=dc, ece-1=c-1d-1, ede-1=d-1 >

Subgroups: 3032 in 204 conjugacy classes, 22 normal (11 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C32, C32, C32, C3×S3, C3⋊S3, C3×C9, He3, He3, 3- 1+2, C33, C33, C33, C32⋊C6, C3×C3⋊S3, C33⋊C2, C3≀C3, C3≀C3, C3×He3, C3×3- 1+2, C34, C33⋊C6, He34S3, C34⋊C2, C3×C3≀C3, C345C6
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, C32⋊C6, C3×C3⋊S3, C33⋊C6, He34S3, C345C6

Character table of C345C6

 class 123A3B3C3D3E3F3G3H3I3J3K3L3M3N3O3P3Q3R3S3T6A6B9A9B9C9D9E9F
 size 18122226666666666669918188181181818181818
ρ1111111111111111111111111111111    trivial
ρ21-111111111111111111111-1-1111111    linear of order 2
ρ3111111111111111111ζ3ζ32ζ3ζ32ζ3ζ32ζ3ζ3ζ3ζ32ζ32ζ32    linear of order 3
ρ4111111111111111111ζ32ζ3ζ32ζ3ζ32ζ3ζ32ζ32ζ32ζ3ζ3ζ3    linear of order 3
ρ51-11111111111111111ζ32ζ3ζ32ζ3ζ6ζ65ζ32ζ32ζ32ζ3ζ3ζ3    linear of order 6
ρ61-11111111111111111ζ3ζ32ζ3ζ32ζ65ζ6ζ3ζ3ζ3ζ32ζ32ζ32    linear of order 6
ρ7202222-12-1-1-1-1-1-1-12-12222200-1-1-1-1-1-1    orthogonal lifted from S3
ρ820-1-1-12-1-1-1-1-1222-12-1-122-1-100-12-1-1-12    orthogonal lifted from S3
ρ920-1-1-122-1-1-1-1-1-1-1222-122-1-100-1-122-1-1    orthogonal lifted from S3
ρ1020-1-1-12-1-1222-1-1-1-12-1-122-1-1002-1-1-12-1    orthogonal lifted from S3
ρ1120-1-1-12-1-1222-1-1-1-12-1-1-1--3-1+-3ζ6ζ6500-1--3ζ6ζ6ζ65-1+-3ζ65    complex lifted from C3×S3
ρ1220-1-1-122-1-1-1-1-1-1-1222-1-1+-3-1--3ζ65ζ600ζ65ζ65-1+-3-1--3ζ6ζ6    complex lifted from C3×S3
ρ13202222-12-1-1-1-1-1-1-12-12-1--3-1+-3-1--3-1+-300ζ6ζ6ζ6ζ65ζ65ζ65    complex lifted from C3×S3
ρ1420-1-1-122-1-1-1-1-1-1-1222-1-1--3-1+-3ζ6ζ6500ζ6ζ6-1--3-1+-3ζ65ζ65    complex lifted from C3×S3
ρ1520-1-1-12-1-1222-1-1-1-12-1-1-1+-3-1--3ζ65ζ600-1+-3ζ65ζ65ζ6-1--3ζ6    complex lifted from C3×S3
ρ1620-1-1-12-1-1-1-1-1222-12-1-1-1--3-1+-3ζ6ζ6500ζ6-1--3ζ6ζ65ζ65-1+-3    complex lifted from C3×S3
ρ1720-1-1-12-1-1-1-1-1222-12-1-1-1+-3-1--3ζ65ζ600ζ65-1+-3ζ65ζ6ζ6-1--3    complex lifted from C3×S3
ρ18202222-12-1-1-1-1-1-1-12-12-1+-3-1--3-1+-3-1--300ζ65ζ65ζ65ζ6ζ6ζ6    complex lifted from C3×S3
ρ196066660-30000000-30-3000000000000    orthogonal lifted from C32⋊C6
ρ2060-36-3-330-3033-3000-30000000000000    orthogonal lifted from C33⋊C6
ρ21606-3-3-300-303-303-3030000000000000    orthogonal lifted from C33⋊C6
ρ2260-3-3-36060000000-30-3000000000000    orthogonal lifted from C32⋊C6
ρ2360-3-36-3303-30-30300-30000000000000    orthogonal lifted from C33⋊C6
ρ2460-3-36-30003-33-30-3030000000000000    orthogonal lifted from C33⋊C6
ρ2560-3-3-360-30000000-306000000000000    orthogonal lifted from C32⋊C6
ρ2660-36-3-3003-3003-3-3030000000000000    orthogonal lifted from C33⋊C6
ρ2760-3-36-3-30-30303-33000000000000000    orthogonal lifted from C33⋊C6
ρ2860-36-3-3-3003-3-3033000000000000000    orthogonal lifted from C33⋊C6
ρ29606-3-3-33003-303-300-30000000000000    orthogonal lifted from C33⋊C6
ρ30606-3-3-3-303-303-303000000000000000    orthogonal lifted from C33⋊C6

Permutation representations of C345C6
On 27 points - transitive group 27T202
Generators in S27
(1 7 4)(10 26 21)(13 18 23)
(1 21 18)(2 19 16)(3 17 20)(4 26 13)(5 14 27)(6 22 15)(7 10 23)(8 24 11)(9 12 25)
(1 4 7)(3 9 6)(10 21 26)(12 22 17)(13 23 18)(15 20 25)
(1 7 4)(2 5 8)(3 9 6)(10 26 21)(11 16 27)(12 22 17)(13 18 23)(14 24 19)(15 20 25)
(1 2 3)(4 5 6 7 8 9)(10 11 12 13 14 15)(16 17 18 19 20 21)(22 23 24 25 26 27)

G:=sub<Sym(27)| (1,7,4)(10,26,21)(13,18,23), (1,21,18)(2,19,16)(3,17,20)(4,26,13)(5,14,27)(6,22,15)(7,10,23)(8,24,11)(9,12,25), (1,4,7)(3,9,6)(10,21,26)(12,22,17)(13,23,18)(15,20,25), (1,7,4)(2,5,8)(3,9,6)(10,26,21)(11,16,27)(12,22,17)(13,18,23)(14,24,19)(15,20,25), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27)>;

G:=Group( (1,7,4)(10,26,21)(13,18,23), (1,21,18)(2,19,16)(3,17,20)(4,26,13)(5,14,27)(6,22,15)(7,10,23)(8,24,11)(9,12,25), (1,4,7)(3,9,6)(10,21,26)(12,22,17)(13,23,18)(15,20,25), (1,7,4)(2,5,8)(3,9,6)(10,26,21)(11,16,27)(12,22,17)(13,18,23)(14,24,19)(15,20,25), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27) );

G=PermutationGroup([[(1,7,4),(10,26,21),(13,18,23)], [(1,21,18),(2,19,16),(3,17,20),(4,26,13),(5,14,27),(6,22,15),(7,10,23),(8,24,11),(9,12,25)], [(1,4,7),(3,9,6),(10,21,26),(12,22,17),(13,23,18),(15,20,25)], [(1,7,4),(2,5,8),(3,9,6),(10,26,21),(11,16,27),(12,22,17),(13,18,23),(14,24,19),(15,20,25)], [(1,2,3),(4,5,6,7,8,9),(10,11,12,13,14,15),(16,17,18,19,20,21),(22,23,24,25,26,27)]])

G:=TransitiveGroup(27,202);

On 27 points - transitive group 27T205
Generators in S27
(1 26 23)(2 7 4)(3 13 10)(5 22 16)(6 11 20)(8 19 25)(9 17 14)(12 18 27)(15 24 21)
(1 11 14)(2 15 12)(3 13 10)(4 21 27)(5 22 16)(6 17 23)(7 24 18)(8 19 25)(9 26 20)
(1 14 11)(2 21 18)(3 5 8)(4 24 12)(6 23 17)(7 15 27)(9 20 26)(10 16 25)(13 22 19)
(1 23 26)(2 27 24)(3 25 22)(4 18 15)(5 10 19)(6 20 11)(7 12 21)(8 16 13)(9 14 17)
(1 2 3)(4 5 6 7 8 9)(10 11 12 13 14 15)(16 17 18 19 20 21)(22 23 24 25 26 27)

G:=sub<Sym(27)| (1,26,23)(2,7,4)(3,13,10)(5,22,16)(6,11,20)(8,19,25)(9,17,14)(12,18,27)(15,24,21), (1,11,14)(2,15,12)(3,13,10)(4,21,27)(5,22,16)(6,17,23)(7,24,18)(8,19,25)(9,26,20), (1,14,11)(2,21,18)(3,5,8)(4,24,12)(6,23,17)(7,15,27)(9,20,26)(10,16,25)(13,22,19), (1,23,26)(2,27,24)(3,25,22)(4,18,15)(5,10,19)(6,20,11)(7,12,21)(8,16,13)(9,14,17), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27)>;

G:=Group( (1,26,23)(2,7,4)(3,13,10)(5,22,16)(6,11,20)(8,19,25)(9,17,14)(12,18,27)(15,24,21), (1,11,14)(2,15,12)(3,13,10)(4,21,27)(5,22,16)(6,17,23)(7,24,18)(8,19,25)(9,26,20), (1,14,11)(2,21,18)(3,5,8)(4,24,12)(6,23,17)(7,15,27)(9,20,26)(10,16,25)(13,22,19), (1,23,26)(2,27,24)(3,25,22)(4,18,15)(5,10,19)(6,20,11)(7,12,21)(8,16,13)(9,14,17), (1,2,3)(4,5,6,7,8,9)(10,11,12,13,14,15)(16,17,18,19,20,21)(22,23,24,25,26,27) );

G=PermutationGroup([[(1,26,23),(2,7,4),(3,13,10),(5,22,16),(6,11,20),(8,19,25),(9,17,14),(12,18,27),(15,24,21)], [(1,11,14),(2,15,12),(3,13,10),(4,21,27),(5,22,16),(6,17,23),(7,24,18),(8,19,25),(9,26,20)], [(1,14,11),(2,21,18),(3,5,8),(4,24,12),(6,23,17),(7,15,27),(9,20,26),(10,16,25),(13,22,19)], [(1,23,26),(2,27,24),(3,25,22),(4,18,15),(5,10,19),(6,20,11),(7,12,21),(8,16,13),(9,14,17)], [(1,2,3),(4,5,6,7,8,9),(10,11,12,13,14,15),(16,17,18,19,20,21),(22,23,24,25,26,27)]])

G:=TransitiveGroup(27,205);

Matrix representation of C345C6 in GL8(𝔽19)

10000000
01000000
000180000
001180000
000120100
0070181800
00080001
00110001818
,
1818000000
10000000
001810000
001800000
001200100
0007181800
00800001
00011001818
,
10000000
01000000
000180000
001180000
000121000
000120100
00080001
00110001818
,
10000000
01000000
001810000
001800000
001200100
0007181800
00800001
00011001818
,
110000000
88000000
000000118
001111001817
001000012
000000012
00000108
00001008

G:=sub<GL(8,GF(19))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,7,0,11,0,0,18,18,12,0,8,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[18,1,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,18,12,0,8,0,0,0,1,0,0,7,0,11,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,11,0,0,18,18,12,12,8,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,18,18,12,0,8,0,0,0,1,0,0,7,0,11,0,0,0,0,0,18,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,1,18],[11,8,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,11,1,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,18,0,0,0,0,0,0,18,17,12,12,8,8] >;

C345C6 in GAP, Magma, Sage, TeX

C_3^4\rtimes_5C_6
% in TeX

G:=Group("C3^4:5C6");
// GroupNames label

G:=SmallGroup(486,167);
// by ID

G=gap.SmallGroup(486,167);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,218,548,867,3244,3250,11669]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^3=e^6=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a^-1*c^-1,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,c*d=d*c,e*c*e^-1=c^-1*d^-1,e*d*e^-1=d^-1>;
// generators/relations

Export

Character table of C345C6 in TeX

׿
×
𝔽